Profesor Responsable: José María Moratal Mascarell. 2019

Ejercicios Tema 5: Química del Boro

- 1.- Completa y ajusta las siguientes reacciones químicas:
 - a) se calienta B₂O₃(s) con Mg(l)
 - b) tribromuro de boro(g) con $H_2(g)$
 - c) tricloruro de boro(l) con H₂O(l)
 - d) $B_2O_3(s) + CaF_2(s) + H_2SO_4(conc)$
 - e) se calienta a 500° C, $B_2O_3(s)$, C(s) y $Cl_2(g)$
 - f) $Na_2[B_4O_5(OH)_4](ac) + H_2SO_4(ac) + H_2O(l)$
 - g) H₃BO₃(s) con etanol(l) y H₂SO₄(conc)
 - h) calentar a 180°C BF₃(g) con NaH(s)
 - i) diborano(g) con O₂(g)
 - j) diborano con agua(l)
 - k) diborano(g) con NaH(s)
- 2.- Calcula la entalpía de formación estándar del trióxido de boro, $\Delta H_f^o[B_2O_3(s)]$, teniendo en cuenta que la entalpía de combustión del diborano es $\Delta H^o[$ combustión $B_2H_6(g)]=-2165 \text{ kJ·mol}^{-1}$.

Datos.- $\Delta H_f^{\circ}(kJ \cdot mol^{-1})$: $H_2O(l) = -286$, $B_2H_6(g) = +36$.

- **3.-** a) El boro forma el anión BC_2^{5-} ; escribe la estructura de Lewis de este anión y explica cuál es su geometría. b) El anión BN_2^{x-} es isoelectrónico con el anterior; determina cuál es la carga de dicho anión y su estructura.
- **4.-** Los trihaluros de boro BX_3 , forman aductos con las bases de Lewis. Explica por qué la fuerza relativa como ácidos de Lewis sigue el orden: $BI_3 > BBr_3 > BCl_3 > BF_3$.
- 5.- El orden de estabilidad relativa de los aductos L·BH₃ (donde L es una base de Lewis) es:

$$Me_2O < THF < Me_2S < Me_3N < Me_3P < H^-$$
.

- a) ¿Qué ocurrirá cuando se adicione Me₃N a una disolución de THF·BH₃ en THF(*l*)?
- b) ¿Será estable el BH_4^- cuando se encuentre disuelto en THF(l)?
- **6.-** a) Nombra los siguientes boranos: B_4H_8 , $B_8H_8^{2-}$, B_6H_{10} , $B_{11}H_{15}$, $B_6H_6^{2-}$ y B_4H_{10}
 - b) Explica y dibuja la estructura de los boranos B₄H₈, B₆H₁₀, B₁₁H₁₅ y B₄H₁₀ a partir del deltaedro cerrado del que se derivan respectivamente.
- 7.- El B₅H₁₁ se puede preparar a partir del B₅H₉, mediante reducción por dos electrones del B₅H₉ seguida de protonación de la especie aniónica resultante.
 - a) Explica las estructuras de los boranos B₅H₉ y B₅H₁₁, *a partir del deltaedro cerrado* del que se derivan respectivamente.
 - b) Nombra los dos boranos neutros, B₅H₉ y B₅H₁₁, y la especie aniónica intermedia.